Tag Archives: Conclusion

The Principle of Charity (Revisited)

As an adjunct faculty member of Philosophy, one of my soapbox lectures to my students is the importance and application of the Principle of Charity. I mention it in the 1st Day Syllabus, I mention it again about half-way through the semester, and I include it as a short-answer question on the Final Exam.

At its core, the Principle of Charity (PoC) involves thinking well of people; their intentions, their capabilities, and their knowledge level. I take it very seriously because (1) it is the civil, respectful, and necessary thing to do and (2) it actually makes discussions or discourse more efficient by not wasting time on misunderstandings or by committing straw person fallacies. In either case, the PoC has a wide range of important uses and that is why I hammer it into to my students from the get-go. Below, I will explain what it is and give some pertinent examples as well as provide some good resources for further reading.

Continue reading

Sentential Logic: Rules of Inference for Deriving Proofs

EXCELLENT RESOURCE AVAILABLE HERE: https://courses.umass.edu/phil110-gmh/text/c05.pdf

Ampersand-In (&I): If one has available lines, A and B, then one is entitled to write down their conjunction, in one order A&B, or the other order B&A.

Ampersand-Out (&O): If one has available a line of the form A&B, then one is entitled to write down either conjunct A or conjunct B.

Wedge-In (∨I): If one has available a line A, then one is entitled to write down the disjunction of A with any formula B, in one order AvB, or the other order BvA.

Wedge-Out (∨O): If one has available a line of the form A∨B, and if one additionally has available a line which is the negation of the first disjunct, ~A, then one is entitled to write down the second disjunct, B. Likewise, if one has available a line of the form A∨B, and if one additionally has available a line which is the negation of the second disjunct, ~B, then one is entitled to write down the first disjunct, A.

Double-Arrow-In (↔I): If one has available a line that is a conditional A→B, and one additionally has available a line that is the converse B→A, then one is entitled to write down either the biconditional A↔B or the biconditional B↔A.

Double-Arrow-Out (↔O): If one has available a line of the form A↔B, then one is entitled to write down both the conditional A→B and its converse B→A.

Arrow-Out (→O): If one has available a line of the form A→B, and if one additionally has available a line which is the antecedent A, then one is entitled to write down the consequent B. Likewise, if one has available a line of the form A→B, and if one additionally has available a line which is the negation of the consequent, ~B, then one is entitled to write down the negation of the antecedent, ~A.

Double Negation (DN): If one has available a line A, then one is entitled to write down the double-negation ~~A. Similarly, if one has available a line of the form ~~A, then one is entitled to write down the formula A.